Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38522841

RESUMEN

OBJECTIVES: Bacteriophage (phage) therapy is a promising anti-infective option to combat antimicrobial resistance. However, the clinical utilization of phage therapy has been severely compromised by the potential emergence of phage resistance. Although certain phage resistance mechanisms can restore bacterial susceptibility to certain antibiotics, a lack of knowledge of phage resistance mechanisms hinders optimal use of phages and their combination with antibiotics. METHODS: Genome-wide transposon screening was performed with a mutant library of Klebsiella pneumoniae MKP103 to identify phage pKMKP103_1-resistant mutants. Phage-resistant phenotypes were evaluated by time-kill kinetics and efficiency of plating assays. Phage resistance mechanisms were investigated with adsorption, one-step growth, and mutation frequency assays. Antibiotic susceptibility was determined with broth microdilution and population analysis profiles. RESULTS: We observed a repertoire of phage resistance mechanisms in K pneumoniae, such as disruption of phage binding (fhuA::Tn and tonB::Tn), extension of the phage latent period (mnmE::Tn and rpoN::Tn), and increased mutation frequency (mutS::Tn and mutL::Tn). Notably, in contrast to the prevailing view that phage resistance re-sensitizes antibiotic-resistant bacteria, we observed a bidirectional steering effect on bacterial antibiotic susceptibility. Specifically, rpoN::Tn increased susceptibility to colistin while mutS::Tn and mutL::Tn increased resistance to rifampicin and colistin. DISCUSSION: Our findings demonstrate that K pneumoniae employs multiple strategies to overcome phage infection, which may result in enhanced or reduced antibiotic susceptibility. Mechanism-guided phage steering should be incorporated into phage therapy to better inform clinical decisions on phage-antibiotic combinations.

2.
J Pharm Sci ; 113(1): 202-213, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37879409

RESUMEN

Colistin is a polymyxin and peptide antibiotic that can yield rapid bacterial killing, but also leads to resistance emergence. We aimed to develop a novel experimental and Quantitative and Systems Pharmacology approach to distinguish between inducible and non-inducible resistance. Viable count profiles for the total and less susceptible populations of Pseudomonas aeruginosa ATCC 27853 from static and dynamic in vitro infection models were simultaneously modeled. We studied low and normal initial inocula to distinguish between inducible and non-inducible resistance. A novel cutoff filter approach allowed us to describe the eradication and inter-conversion of bacterial populations. At all inocula, 4.84 mg/L of colistin (sulfate) yielded ≥4 log10 killing, followed by >4 log10 regrowth. A pre-existing, less susceptible population was present at standard but not at low inocula. Formation of a non-pre-existing, less susceptible population was most pronounced at intermediate colistin (sulfate) concentrations (0.9 to 5 mg/L). Both less susceptible populations inter-converted with the susceptible population. Simultaneously modeling of the total and less susceptible populations at low and standard inocula enabled us to identify the de novo formation of an inducible, less susceptible population. Inducible resistance at intermediate colistin concentrations highlights the importance of rapidly achieving efficacious polymyxin concentrations by front-loaded dosage regimens.


Asunto(s)
Colistina , Infecciones por Pseudomonas , Humanos , Colistina/farmacología , Pseudomonas aeruginosa , Farmacología en Red , Antibacterianos , Infecciones por Pseudomonas/tratamiento farmacológico , Sulfatos , Pruebas de Sensibilidad Microbiana
3.
Small ; 20(6): e2305052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798622

RESUMEN

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Asunto(s)
Nanopartículas , Polimixina B , Polimixina B/farmacología , Liposomas/farmacología , Antibacterianos/farmacología , Bacterias Gramnegativas , Klebsiella pneumoniae , Polisacáridos Bacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
4.
Microbiol Spectr ; 11(4): e0085223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37432123

RESUMEN

Polymyxins are last-line antibiotics employed against multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance is rapidly on the rise globally. Polymyxins initially target lipid A of lipopolysaccharides (LPSs) in the cell outer membrane (OM), causing disorganization and cell lysis. While most studies focus on how genetic variations confer polymyxin resistance, the mechanisms of membrane remodeling and metabolic changes in polymyxin-resistant strains remain unclear, thus hampering the development of effective therapies to treat severe K. pneumoniae infections. In the present study, lipid A profiling, OM lipidomics, genomics, and metabolomics were integrated to elucidate the global mechanisms of polymyxin resistance and metabolic adaptation in a polymyxin-resistant strain (strain S01R; MIC of >128 mg/L) obtained from K. pneumoniae strain S01, a polymyxin-susceptible (MIC of 2 mg/L), New Delhi metallo-ß-lactamase (NDM)-producing MDR clinical isolate. Genomic analysis revealed a novel in-frame deletion at position V258 of PhoQ in S01R, potentially leading to lipid A modification with 4-amino-4-deoxy-l-arabinose (L-Ara4N) despite the absence of polymyxin B. Comparative metabolomic analysis revealed slightly elevated levels of energy production and amino acid metabolism in S01R compared to their levels in S01. Exposure to polymyxin B (4 mg/L for S01 and 512 mg/L for S01R) substantially altered energy, nucleotide, and amino acid metabolism and resulted in greater accumulation of lipids in both strains. Furthermore, the change induced by polymyxin B treatment was dramatic at both 1 and 4 h in S01 but only significant at 4 h in S01R. Overall, profound metabolic adaptation was observed in S01R following polymyxin B treatment. These findings contribute to our understanding of polymyxin resistance mechanisms in problematic NDM-producing K. pneumoniae strains and may facilitate the discovery of novel therapeutic targets. IMPORTANCE Antimicrobial resistance (AMR) is a major threat to global health. The emergence of resistance to the polymyxins that are the last line of defense in so-called Gram-negative "superbugs" has further increased the urgency to develop novel therapies. There are frequent outbreaks of K. pneumoniae infections in hospitals being reported, and polymyxin usage is increasing remarkably. Importantly, the polymyxin-resistant K. pneumoniae strains are imposing more severe consequences to health systems. Using metabolomics, lipid A profiling, and outer membrane lipidomics, our findings reveal (i) changes in the pentose phosphate pathway and amino acid and nucleotide metabolism in a susceptible strain following polymyxin treatment and (ii) how cellular metabolism, lipid A modification, and outer membrane remodeling were altered in K. pneumoniae following the acquisition of polymyxin resistance. Our study provides, for the first time, mechanistic insights into metabolic responses to polymyxin treatment in a multidrug-resistant, NDM-producing K. pneumoniae clinical isolate with acquired polymyxin resistance. Overall, these results will assist in identifying new therapeutic targets to combat and prevent polymyxin resistance.


Asunto(s)
Infecciones por Klebsiella , Polimixinas , Humanos , Polimixinas/farmacología , Polimixinas/metabolismo , Polimixina B/farmacología , Klebsiella pneumoniae , Lípido A/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Metabolismo de los Lípidos , Infecciones por Klebsiella/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
5.
Int J Antimicrob Agents ; 62(3): 106902, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37380093

RESUMEN

OBJECTIVES: Antimicrobial resistance is a major global threat. Because of the stagnant antibiotic pipeline, synergistic antibiotic combination therapy has been proposed to treat rapidly emerging multidrug-resistant (MDR) pathogens. We investigated antimicrobial synergy of polymyxin/rifampicin combination against MDR Acinetobacter baumannii. METHODS: In vitro static time-kill studies were performed over 48 h at an initial inoculum of ∼107 CFU/mL against three polymyxin-susceptible but MDR A. baumannii isolates. Membrane integrity was examined at 1 and 4 h post-treatment to elucidate the mechanism of synergy. Finally, a semi-mechanistic PK/PD model was developed to simultaneously describe the time course of bacterial killing and prevention of regrowth by mono- and combination therapies. RESULTS: Polymyxin B and rifampicin alone produced initial killing against MDR A. baumannii but were associated with extensive regrowth. Notably, the combination showed synergistic killing across all three A. baumannii isolates with bacterial loads below the limit of quantification for up to 48 h. Membrane integrity assays confirmed the role of polymyxin-driven outer membrane remodelling in the observed synergy. Subsequently, the mechanism of synergy was incorporated into a PK/PD model to describe the enhanced uptake of rifampicin due to polymyxin-induced membrane permeabilisation. Simulations with clinically utilised dosing regimens confirmed the therapeutic potential of this combination, particularly in the prevention of bacterial regrowth. Finally, results from a neutropenic mouse thigh infection model confirmed the in vivo synergistic killing of the combination against A. baumannii AB5075. CONCLUSION: Our results showed that polymyxin B combined with rifampicin is a promising option to treat bloodstream and tissue infection caused by MDR A. baumannii and warrants clinical evaluations.


Asunto(s)
Acinetobacter baumannii , Polimixina B , Animales , Ratones , Polimixina B/farmacología , Rifampin/farmacología , Polimixinas/farmacología , Sinergismo Farmacológico , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
6.
J Zhejiang Univ Sci B ; 24(2): 130-142, 2023 Feb 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-36751699

RESUMEN

Polymyxin B, which is a last-line antibiotic for extensively drug-resistant Gram-negative bacterial infections, became available in China in Dec. 2017. As dose adjustments are based solely on clinical experience of risk toxicity, treatment failure, and emergence of resistance, there is an urgent clinical need to perform therapeutic drug monitoring (TDM) to optimize the use of polymyxin B. It is thus necessary to standardize operating procedures to ensure the accuracy of TDM and provide evidence for their rational use. We report a consensus on TDM guidelines for polymyxin B, as endorsed by the Infection and Chemotherapy Committee of the Shanghai Medical Association and the Therapeutic Drug Monitoring Committee of the Chinese Pharmacological Society. The consensus panel was composed of clinicians, pharmacists, and microbiologists from different provinces in China and Australia who made recommendations regarding target concentrations, sample collection, reporting, and explanation of TDM results. The guidelines provide the first-ever consensus on conducting TDM of polymyxin B, and are intended to guide optimal clinical use.


Asunto(s)
Monitoreo de Drogas , Polimixina B , Humanos , Antibacterianos/uso terapéutico , China , Monitoreo de Drogas/métodos , Guías de Práctica Clínica como Asunto
7.
CPT Pharmacometrics Syst Pharmacol ; 12(3): 387-400, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36661181

RESUMEN

Carbapenemase-resistant Klebsiella pneumoniae (KP) resistant to multiple antibiotic classes necessitates optimized combination therapy. Our objective is to build a workflow leveraging omics and bacterial count data to identify antibiotic mechanisms that can be used to design and optimize combination regimens. For pharmacodynamic (PD) analysis, previously published static time-kill studies (J Antimicrob Chemother 70, 2015, 2589) were used with polymyxin B (PMB) and chloramphenicol (CHL) mono and combination therapy against three KP clinical isolates over 24 h. A mechanism-based model (MBM) was developed using time-kill data in S-ADAPT describing PMB-CHL PD activity against each isolate. Previously published results of PMB (1 mg/L continuous infusion) and CHL (Cmax : 8 mg/L; bolus q6h) mono and combination regimens were evaluated using an in vitro one-compartment dynamic infection model against a KP clinical isolate (108 CFU/ml inoculum) over 24 h to obtain bacterial samples for multi-omics analyses. The differentially expressed genes and metabolites in these bacterial samples served as input to develop a partial least squares regression (PLSR) in R that links PD responses with the multi-omics responses via a multi-omics pathway analysis. PMB efficacy was increased when combined with CHL, and the MBM described the observed PD well for all strains. The PLSR consisted of 29 omics inputs and predicted MBM PD response (R2  = 0.946). Our analysis found that CHL downregulated metabolites and genes pertinent to lipid A, hence limiting the emergence of PMB resistance. Our workflow linked insights from analysis of multi-omics data with MBM to identify biological mechanisms explaining observed PD activity in combination therapy.


Asunto(s)
Cloranfenicol , Polimixina B , Humanos , Polimixina B/farmacología , Cloranfenicol/farmacología , Cloranfenicol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Multiómica , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
8.
Mol Neurobiol ; 60(3): 1317-1330, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36443617

RESUMEN

Intraventricular or intrathecal administration of polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria caused infections in the central nervous system (CNS). However, our limited knowledge of the mechanisms underpinning polymyxin-induced neurotoxicity significantly hinders the development of safe and efficacious polymyxin dosing regimens. To this end, we conducted transcriptomic analyses of the rat brain and spinal cord 1 h following intracerebroventricular administration of polymyxin B into rat lateral ventricle at a clinically relevant dose (0.5 mg/kg). Following the treatment, 66 differentially expressed genes (DEGs) were identified in the brain transcriptome while none for the spinal cord (FDR ≤ 0.05, fold-change ≥ 1.5). DEGs were enriched in signaling pathways associated with hormones and neurotransmitters, including dopamine and (nor)epinephrine. Notably, the expression levels of Slc6a3 and Gabra6 were decreased by 20-fold and 4.3-fold, respectively, likely resulting in major perturbations of dopamine and γ-aminobutyric acid signaling in the brain. Mass spectrometry imaging of brain sections revealed a distinct pattern of polymyxin B distribution with the majority accumulating in the injection-side lateral ventricle and subsequently into third and fourth ventricles. Polymyxin B was not detectable in the left lateral ventricle or brain tissue. Electrophysiological measurements on primary cultured rat neurons revealed a large inward current and significant membrane leakage following polymyxin B treatment. Our work demonstrates, for the first time, the key CNS signaling pathways associated with polymyxin neurotoxicity. This mechanistic insight combined with pharmacokinetic/pharmacodynamic dosing strategies will help guide the design of safe and effective intraventricular/intrathecal polymyxin treatment regimens for CNS infections caused by MDR Gram-negative pathogens.


Asunto(s)
Antibacterianos , Polimixina B , Ratas , Animales , Polimixina B/farmacología , Polimixina B/química , Antibacterianos/toxicidad , Transcriptoma/genética , Dopamina , Polimixinas/farmacología , Encéfalo , Receptores de GABA-A
9.
Int J Antimicrob Agents ; 60(3): 106643, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35872294

RESUMEN

INTRODUCTION: Rapid dissemination of plasmid-borne polymyxin resistance mcr-1 genes threatens the efficacy of polymyxins. Acquisition of mcr-1 imposes a fitness cost on bacteria; identifying the molecular mechanisms underpinning this fitness cost will help in the development of adjunctive antimicrobial therapies that target polymyxin-resistant Gram-negative pathogens. METHODS: Phenotypic assays and transcriptomics were acquired to investigate the impact of mcr-1 expression on membrane characteristics and transcriptomic responses in Escherichia coli TOP10 carrying the empty vector pBAD (TOP10+pBAD) and harbouring pBAD-mcr-1 (TOP10+pBAD-mcr-1). RESULTS: The overexpression of mcr-1 increased outer membrane permeability and caused membrane depolarisation, reflective of the transcriptomic results that showed downregulation of multiple genes involved in lipopolysaccharide core and O-antigen biosynthesis. Overexpression of mcr-1 also caused considerable gene expression changes in pathways involving carbohydrate metabolism (phosphotransferase system, pentose phosphate pathway, and pantothenate and coenzyme A biosynthesis), ABC transporters and intracellular responses to stress, especially those associated with oxidative and nucleic acid damage. Expression of mcr-1 also triggered the production of reactive oxygen species. CONCLUSION: These findings indicate that overexpression of mcr-1 results in persistent transcriptomic changes that primarily involve disruption to cell envelope synthesis via the reduction of LPS modifications, as well as dysregulation of carbon metabolism, redox balance and nucleic acids. These consequences of expression dysregulation may act as the main factors that impose a fitness cost with mcr-1 expression.


Asunto(s)
Proteínas de Escherichia coli , Ácidos Nucleicos , Antibacterianos/farmacología , Carbono , Colistina/metabolismo , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Ácidos Nucleicos/metabolismo , Oxidación-Reducción , Plásmidos , Polimixinas
10.
Explor Res Clin Soc Pharm ; 5: 100131, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35478520

RESUMEN

Background: Ward pharmacists are well-positioned to enhance the activities of hospital antimicrobial stewardship (AMS) programs by reviewing the appropriateness of antimicrobials and making recommendations to prescribers. However, recent studies have identified gaps in ward pharmacists' AMS practice, knowledge, skills, and confidence which suggests education and training programs are needed. Objectives: To describe, for the first time, an interactive educational activity - coaching in AMS - targeted at ward pharmacists and explore their perceptions of coaching as a mode of delivering education to improve AMS knowledge, skills, confidence, and practice. A secondary objective was to describe the type, frequency, and acceptance of AMS recommendations made by coached pharmacists. Methods: This was a descriptive pilot study with a qualitative evaluation of pharmacists' perceptions and experiences of coaching. AMS coaching was delivered over 2 months in 2019 to pharmacists providing clinical pharmacy services to general medical and surgical wards. A focus group was conducted one month after the coaching period to elicit pharmacists' perceptions of coaching as a mode of delivering AMS education and how it impacted their AMS knowledge, skills, confidence, and practice. AMS recommendations made by coached pharmacists were prospectively recorded, and the prescriber acceptance rate was determined. Results: Ward pharmacists reported positive experiences with AMS coaching and believed it helped them identify a range of recommendations to improve antimicrobial prescribing and increased their confidence to communicate recommendations to prescribers. Workload issues were identified as the main barrier to implementation. Suggestions were provided to improve coaching implementation feasibility. During coaching, 162 AMS recommendations were identified for a range of antimicrobials, and 69% (113/162) were accepted and implemented. Conclusions: Ward pharmacists believed coaching improved their AMS knowledge, skills, confidence, and practice, including their confidence to discuss recommendations with prescribers. These results can assist with the design and evaluation of future hospital-based AMS educational initiatives.

11.
Adv Drug Deliv Rev ; 183: 114171, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189264

RESUMEN

Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.


Asunto(s)
Antibacterianos , Monitoreo de Drogas , Antibacterianos/farmacocinética , Farmacorresistencia Bacteriana Múltiple , Humanos , Péptidos/farmacología
12.
Antibiotics (Basel) ; 11(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35052977

RESUMEN

We evaluated piperacillin-tazobactam and tobramycin regimens against Pseudomonas aeruginosa isolates from critically ill patients. Static-concentration time-kill studies (SCTK) assessed piperacillin-tazobactam and tobramycin monotherapies and combinations against four isolates over 72 h. A 120 h-dynamic in vitro infection model (IVM) investigated isolates Pa1281 (MICpiperacillin 4 mg/L, MICtobramycin 0.5 mg/L) and CR380 (MICpiperacillin 32 mg/L, MICtobramycin 1 mg/L), simulating the pharmacokinetics of: (A) tobramycin 7 mg/kg q24 h (0.5 h-infusions, t1/2 = 3.1 h); (B) piperacillin 4 g q4 h (0.5 h-infusions, t1/2 = 1.5 h); (C) piperacillin 24 g/day, continuous infusion; A + B; A + C. Total and less-susceptible bacteria were determined. SCTK demonstrated synergy of the combination for all isolates. In the IVM, regimens A and B provided initial killing, followed by extensive regrowth by 72 h for both isolates. C provided >4 log10 CFU/mL killing, followed by regrowth close to initial inoculum by 96 h for Pa1281, and suppressed growth to <4 log10 CFU/mL for CR380. A and A + B initially suppressed counts of both isolates to <1 log10 CFU/mL, before regrowth to control or starting inoculum and resistance emergence by 72 h. Overall, the combination including intermittent piperacillin-tazobactam did not provide a benefit over tobramycin monotherapy. A + C, the combination regimen with continuous infusion of piperacillin-tazobactam, provided synergistic killing (counts <1 log10 CFU/mL) of Pa1281 and CR380, and suppressed regrowth to <2 and <4 log10 CFU/mL, respectively, and resistance emergence over 120 h. The shape of the concentration-time curve was important for synergy of the combination.

13.
Antimicrob Agents Chemother ; 66(3): e0220321, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041509

RESUMEN

Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ, 0.5 mg/liter; MICTOB, 2 mg/liter) and CW8 (MICCAZ, 2 mg/liter; MICTOB, 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log10 CFU/ml) and biofilm (>3.8 log10 CFU/cm2) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología , Tobramicina/uso terapéutico
14.
Nat Commun ; 13(1): 343, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039508

RESUMEN

A depleted antimicrobial drug pipeline combined with an increasing prevalence of Gram-negative 'superbugs' has increased interest in nano therapies to treat antibiotic resistance. As cubosomes and polymyxins disrupt the outer membrane of Gram-negative bacteria via different mechanisms, we herein examine the antimicrobial activity of polymyxin-loaded cubosomes and explore an alternative strategy via the polytherapy treatment of pathogens with cubosomes in combination with polymyxin. The polytherapy treatment substantially increases antimicrobial activity compared to polymyxin B-loaded cubosomes or polymyxin and cubosomes alone. Confocal microscopy and neutron reflectometry suggest the superior polytherapy activity is achieved via a two-step process. Firstly, electrostatic interactions between polymyxin and lipid A initially destabilize the outer membrane. Subsequently, an influx of cubosomes results in further membrane disruption via a lipid exchange process. These findings demonstrate that nanoparticle-based polytherapy treatments may potentially serve as improved alternatives to the conventional use of drug-loaded lipid nanoparticles for the treatment of "superbugs".


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Nanopartículas/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Quimioterapia Combinada , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Polimixina B/farmacología
15.
Front Pharmacol ; 13: 975066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588676

RESUMEN

Introduction: Polymyxin B is a last-line therapy for carbapenem-resistant microorganisms. However, a lack of clinical pharmacokinetic/pharmacodynamic (PK/PD) data has substantially hindered dose optimization and breakpoint setting. Methods: A prospective, multi-center clinical trial was undertaken with polymyxin B [2.5 mg/kg loading dose (3-h infusion), 1.25 mg/kg/12 h maintenance dose (2-h infusion)] for treatment of carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI). Safety, clinical and microbiological efficacy were evaluated. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to determine the concentrations of polymyxin B in blood samples. Population pharmacokinetic (PK) modeling and Monte Carlo simulations were conducted to examine the susceptibility breakpoint for polymyxin B against BSI caused by CRKP. Results: Nine patients were enrolled and evaluated for safety. Neurotoxicity (5/9), nephrotoxicity (5/9), and hyperpigmentation (1/9) were recorded. Blood cultures were negative within 3 days of commencing therapy in all 8 patients evaluated for microbiological efficacy, and clinical cure or improvement occurred in 6 of 8 patients. Cmax and Cmin following the loading dose were 5.53 ± 1.80 and 1.62 ± 0.41 mg/L, respectively. With maintenance dosing, AUCss,24 h was 79.6 ± 25.0 mg h/L and Css,avg 3.35 ± 1.06 mg/L. Monte Carlo simulations indicated that a 1 mg/kg/12-hourly maintenance dose could achieve >90% probability of target attainment (PTA) for isolates with minimum inhibitory concentration (MIC) ≤1 mg/L. PTA dropped substantially for MICs ≥2 mg/L, even with a maximally recommended daily dose of 1.5 mg/kg/12-hourly. Conclusion: This is the first clinical PK/PD study evaluating polymyxin B for BSI. These results will assist to optimize polymyxin B therapy and establish its breakpoints for CRKP BSI.

16.
Antimicrob Agents Chemother ; 66(2): e0144621, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34807759

RESUMEN

Multidrug-resistant (MDR) Pseudomonas aeruginosa presents a serious threat to public health due to its widespread resistance to numerous antibiotics. P. aeruginosa commonly causes nosocomial infections including urinary tract infections (UTI) which have become increasingly difficult to treat. The lack of effective therapeutic agents has renewed interest in fosfomycin, an old drug discovered in the 1960s and approved prior to the rigorous standards now required for drug approval. Fosfomycin has a unique structure and mechanism of action, making it a favorable therapeutic alternative for MDR pathogens that are resistant to other classes of antibiotics. The absence of susceptibility breakpoints for fosfomycin against P. aeruginosa limits its clinical use and interpretation due to extrapolation of breakpoints established for Escherichia coli or Enterobacterales without supporting evidence. Furthermore, fosfomycin use and efficacy for treatment of P. aeruginosa are also limited by both inherent and acquired resistance mechanisms. This narrative review provides an update on currently identified mechanisms of resistance to fosfomycin, with a focus on those mediated by P. aeruginosa such as peptidoglycan recycling enzymes, chromosomal Fos enzymes, and transporter mutation. Additional fosfomycin resistance mechanisms exhibited by Enterobacterales, including mutations in transporters and associated regulators, plasmid-mediated Fos enzymes, kinases, and murA modification, are also summarized and contrasted. These data highlight that different fosfomycin resistance mechanisms may be associated with elevated MIC values in P. aeruginosa compared to Enterobacterales, emphasizing that extrapolation of E. coli breakpoints to P. aeruginosa should be avoided.


Asunto(s)
Fosfomicina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli/genética , Fosfomicina/farmacología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética
17.
Int J Antimicrob Agents ; 59(2): 106505, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954369

RESUMEN

Polymyxins remain important last-line antibiotics against multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is emerging and the mobile polymyxin resistance gene, mcr, is contributing to the wide dissemination of polymyxin resistance, especially among Escherichia coli, with mcr-1 being the most commonly found variant. The objective of this study was to provide mechanistic insights into concentration-dependent transcriptomic responses of mcr-harbouring E. coli following polymyxin treatment. An mcr-1-carrying clinical isolate of E. coli (LH30) was treated with polymyxin B at 2 and 8 mg/L. Bacterial cultures were collected before and 1 h following treatment for viable counting and transcriptomic analysis. Growth of E. coli LH30 was unaffected by 2 mg/L polymyxin B, whereas killing of approximately 2 log10 colony-forming units/mL occurred with 8 mg/L at 1 h. All four phosphoethanolamine (pEtN) transferase genes (mcr-1, eptA, eptB and eptC) were upregulated (fold change 2.4-4.0) by 8 mg/L polymyxin B, indicating that pEtN modifications were the preferred polymyxin resistance mechanism. The higher polymyxin B concentration also affected the expression of genes involved in fatty acid, lipopolysaccharide, lipid A, phospholipid biosynthesis, iron homeostasis and oxidative stress pathways. This transcriptomic analysis revealed that cell envelope remodelling, pEtN modification, iron acquisition and oxidative stress protective mechanisms play a key role in the survival of mcr-carrying E. coli treated with polymyxin. These findings provide new mechanistic information at the gene expression level to counter polymyxin resistance.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli/efectos de los fármacos , Polimixinas , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Pruebas de Sensibilidad Microbiana , Plásmidos , Polimixinas/farmacología
18.
Antibiotics (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36671237

RESUMEN

Colistin is a last-line antibiotic against Gram-negative pathogens. However, the emergence of colistin resistance has substantially reduced the clinical effectiveness of colistin. In this study, synergy between colistin and capric acid was examined against twenty-one Gram-negative bacterial isolates (four colistin-susceptible and seventeen colistin-resistant). Checkerboard assays showed a synergistic effect against all colistin-resistant strains [(FICI, fractional inhibitory concentration index) = 0.02-0.38] and two colistin-susceptible strains. Time-kill assays confirmed the combination was synergistic. We suggest that the combination of colistin and capric acid is a promising therapeutic strategy against Gram-negative colistin-resistant strains.

19.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769122

RESUMEN

Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.


Asunto(s)
Péptidos Antimicrobianos/química , Bases de Datos de Compuestos Químicos , Animales , Péptidos Antimicrobianos/clasificación , Péptidos Antimicrobianos/metabolismo , Humanos , Estructura Molecular
20.
J Glob Antimicrob Resist ; 26: 55-63, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34023531

RESUMEN

OBJECTIVES: Hypermutable Pseudomonas aeruginosa strains are a major challenge in cystic fibrosis. We investigated bacterial killing and resistance emergence for approved ceftazidime and tobramycin regimens, alone and in combination. METHODS: Pseudomonas aeruginosa PAOΔmutS and six hypermutable clinical isolates were examined using 48-h static concentration time-kill (SCTK) studies (inoculum ~107.5 CFU/mL); four strains were also studied in a dynamic in vitro model (IVM) (inoculum ~108 CFU/mL). The IVM simulated concentration-time profiles in epithelial lining fluid following intravenous administration of ceftazidime (3 g/day and 9 g/day continuous infusion), tobramycin (5 mg/kg and 10 mg/kg via 30-min infusion 24-hourly; half-life 3.5 h), and their combinations. Time courses of total and less-susceptible populations were determined. RESULTS: Ceftazidime plus tobramycin demonstrated synergistic killing in SCTK studies for all strains, although to a lesser extent for ceftazidime-resistant strains. In the IVM, ceftazidime and tobramycin monotherapies provided ≤5.4 and ≤3.4 log10 initial killing, respectively; however, re-growth with resistance occurred by 72 h. Against strains susceptible to one or both antibiotics, high-dose combination regimens provided >6 log10 initial killing, which was generally synergistic from 8-24 h, and marked suppression of re-growth and resistance at 72 h. The time course of bacterial density in the IVM was well described by mechanism-based models, enabling Monte Carlo simulations (MCSs) to predict likely effectiveness of the combination in patients. CONCLUSION: Results of the IVM and MCS suggested antibacterial effect depends both on the strain's susceptibility and hypermutability. Further investigation of the combination against hypermutable P. aeruginosa strains is warranted.


Asunto(s)
Pseudomonas aeruginosa , Tobramicina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , Tobramicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...